Ch. 4 Review
boundary work -associated with an expanding/contracting boundary (piston-cylinders)

$$
W_{b}=\int_{1}^{2} P d \forall(K J)
$$

Example) Arigid tank contains air at 500 kPa and $150^{\circ} \mathrm{C}$. As a result of heat transfer te the surroundings, the temperature and pressure inside the $\tan 1 \mathrm{k}$ drop to $65^{\circ} \mathrm{C}$ and 400 KPa respectively. Determine the boundary work done in the process.

$$
W=\int p d \forall
$$

- The tank is rigid so $d \forall=0$, therefore $W=0$.

$$
w=\int_{1}^{2} p d \forall=\left.\rho \forall\right|_{1} ^{2}=p v_{2}-p \forall_{1} .
$$

Example) A piston-cylinder device initially contains $0.4 \mathrm{~m}^{3}$ of air at 100 KPa and $80^{\circ} \mathrm{C}$. The air is now compressed to $0.1 \mathrm{~m}^{3}$ in such a way that the temperature inside the cylinder remains constant. Determine the work done during this process.
-using IG EOS

$$
80^{\circ} \mathrm{C}=353.15 \mathrm{~K}
$$

$$
p_{1} V_{1}=R T \text {, }
$$

- In this case, mass, R, and temperature ore constant. - Therefore, $p_{i} H_{1}=M R T=C \quad(C=a$ constant)

$$
P=\frac{c}{V} \text {, since } p \text { is needed for boundary work. }
$$

$$
W=\int_{1}^{2} P d \forall=\int_{1}^{2} \frac{C}{\forall} d \forall=\left.C \ln \forall\right|_{1} ^{2}=C\left(\ln \forall_{2}-\ln \forall_{1}\right)=C \ln \frac{\forall_{2}}{\forall_{1}}
$$

now, $W=P_{1} \forall_{1} \cdot \frac{\forall_{2}}{\theta_{1}}=\left(160 \times 10^{3} \frac{\mathrm{~N}}{x^{2}}\right)\left(0.4 m^{3}\right) \ln \left(\frac{0.1 x^{2}}{0.4 \theta^{3}}\right)$

$$
=-55451.77 \mathrm{~J}=-55.5 \mathrm{KJ}
$$

- since the system is being compressed, work is being done on it. Therefore, the work is negative.

b)

$$
\begin{array}{lll}
\frac{\text { State }}{p_{1}=1.0 \mathrm{mPa}} & \forall_{2}=.4 \forall 1 & \text { State 2 } \\
T=400^{\circ} \mathrm{C} & m=.6 \mathrm{~kg} & p_{2}=0.5 \mathrm{mPa} \\
& & T_{2}=?
\end{array}
$$

- From part $a_{1} V_{i}=.30661 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$
-Using the given volume relation, we can find the new V_{2}.
- In this problem, worte is not being done all the way until the end. There is an intermediate state when the piston first hits the stops. This is where you need to end the boundary work calculation. =All we know about this intermediate state is that the pressure remains constant and that the volume is 40% of the initial volume.
-Knowing this, $\forall_{\text {stop }}=.4 \forall$, and $V_{\text {stop }}=.4 \mathrm{~V}$,

$$
\begin{aligned}
& V_{\text {stop }}=.4\left(.30661 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=.12264 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
& \text { Now, } W_{\text {tostop }}=\operatorname{Pim}\left(v_{\text {stop }}-V_{1}\right)=(1.0 \mathrm{mPa})(.12264-.30661) \mathrm{m}^{3}(0.6 \mathrm{~kg}) \\
& W_{1 \rightarrow \text { stop }}=-110.3 \mathrm{KJ}
\end{aligned}
$$

- This process is different since we cannot use property tables for $V_{\text {stop. }}$
c) $T_{2}=$?
P_{2} and V_{2} are known.
-Using tables $(A-4), T_{2}=151.83^{\circ} \mathrm{C}$

Ex. 5-4) Airat $10^{\circ} \mathrm{C}$ and 80 kPa enters a diffuser of a jet engine sta with a velocity of $200 \frac{\mathrm{~m}}{\mathrm{~s}}$. The inlet area is $0.4 \mathrm{~m}^{2}$. The air leaves at a velocity that is very small compared with the in let velocity. Determine a) the mass flow rate of the air and b) the tempera cure of the air leaving the diffuser.
a) State

$$
\begin{aligned}
& T_{1}=10^{\circ} \mathrm{C}=283.1 \mathrm{~K} \\
& P_{1}=80 \mathrm{kPa} \\
& V_{1}=200 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

state 2

$$
\begin{aligned}
& T=? \\
& V_{2} \cong 0
\end{aligned}
$$

- Using IG formula, specific volume is needed to obtain the mass flow rate.

$$
P V=R T \rightarrow V=\frac{R T}{P}=\frac{\left(287 \frac{\mathrm{~K} \cdot \mathrm{~m})}{\mathrm{kg} \cdot \mathrm{k})(283.15 \psi)}\right.}{80 \times 10^{3} \frac{\mathrm{~K}}{\mathrm{~m}^{2}}}=1.0158 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

$m=\frac{1}{v} V A$ (since V is the reciprocal of density)

$$
\dot{m}=\left(\frac{1}{1.0 i 5 \frac{1 .}{\mathrm{kg}}}\right)\left(200 \frac{\mathrm{k}}{\mathrm{~s}}\right)\left(0.4 \mathrm{~m}^{2}\right)=78.75 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

- Create an expression for h_{z} using $\dot{E}_{\text {in }}=\dot{E}_{\text {out }}$

$$
\begin{aligned}
& x\left(h_{1}+\frac{v_{1}^{2}}{2}\right)=m\left(h_{2}+\frac{\sqrt{2}^{2}}{2}\right) \\
& h_{2}=h_{1}+\frac{r_{1}^{2}-v_{2}^{2}}{2} \\
& h_{2}=h_{1}+\frac{r_{1}^{2}}{2}
\end{aligned}
$$

$$
h_{2}=h_{1}+\frac{v_{1}^{2}-\sqrt{2}_{2}^{2}}{2} \quad\left(\text { since } v_{2} \times 0_{1}\right. \text { cancel it) }
$$

-From I6 tables, $h_{1}=283.14 \frac{\mathrm{~kJ}}{\mathrm{~kg}}($ at 283 K) (interpolated between 280 and 285 using hand T) $h_{2}-303.14 \mathrm{~kg}$ Itrapedating $\left(\frac{1}{2} \pi 303 \mathrm{~K}\right)$

For these problems, I was taught to use the general energy balance equation (shown below the drawing), so that's what I was used to. Using the Ein=Eout method will yield the same results. The only difference between the two methods is that I have to account for signs using the general energy balance equation.

On this problem, I started using Ein=Eout to avoid confusion during tutoring.

Ch. 6
Second Law

- Doesnit involve energy conservation.
- For example a cup of hot cote getting hotter due to the air in the rom doesn't violate the first law but it violates the second law.
- Second law concerns "reversibility"

Heat Engines

- Operate in acycle
- Receive heat from a high-temp. reservoir and convert some amount of heat to work.

Thermal Efficiency
$\eta=\frac{\text { Net work output }}{h_{\text {eat }} \text { input }}=\frac{W_{\text {retort }}}{Q_{\text {in }}}=1-\frac{Q_{\text {at }}}{Q_{\text {in }}} \quad W_{\text {eye }}=Q_{\text {ope }}$
$Q_{H}=Q_{\text {in }}=$ heat transfer at high-temp. medium $\left(T_{H}\right)$
$Q_{L}=Q_{\text {out }}=$ heat transfer at low-temp. medium $\left(T_{L}\right)$

$$
\eta_{t+}=\frac{\text { Whet, out }}{Q_{H}}=1-\frac{Q_{L}}{Q_{i+1}}
$$

6.6-1) Heat is transferred to a heat engine from a furnace at a rate of 8010 M If the rate of waste heat rejection to a nearly river is 50 MW , determine the net power output and the thermal efficiency of the engine.

$$
\begin{aligned}
& Q_{\text {in }}=80 \mathrm{~mW} \quad Q_{\text {out }}=50 \mathrm{~mW} \\
& W_{\text {cyc }}=Q_{\text {cyc }} \rightarrow 80-50=30 \mathrm{~mW} \\
& \eta_{\text {th }}=\frac{W_{\text {arc }}}{Q_{i n}}=\frac{30 \mathrm{~mW}}{80 \mathrm{~mW}}=\frac{3}{8}=.375=37.5 \%
\end{aligned}
$$

Kelvin-Planck Statement

It is impossible for amy device that operates cyclically to receive heat from a single source and convert that heat completely into work.

- There has to be some amount of waste heat.

Refrigeration Cycles+ Heat Pumps

- Coefficient of performance (COP)

Refrigeration $\quad C O P_{R}=\frac{Q_{L}}{W_{\text {in }}}$ (the objective of a refrigerator is to reject heat)

$$
C O P_{R}=\frac{Q_{L}}{Q_{H-}-Q_{L}}=\frac{1}{\frac{Q_{H}}{Q_{R}}-1}
$$

$\operatorname{coP}_{H P}=\frac{Q_{H}}{W_{i n}}=\frac{Q_{H}}{Q_{H}-Q_{L}}=\frac{1}{-\frac{Q_{2}}{Q_{H}}}$ (The objective of a heat pump is and move it to a hot reservoir)

Ex 6-3) A refrigerator with cop of 1.2 removes heat from a refrigerated space at a rate of $60 \frac{\mathrm{~kJ}}{\mathrm{~min}}$. Determine a) the electric power consumed by the refrigerator and b) the rate of heat transfer to the kitchen air.

$$
C O P=\frac{Q_{L}}{\mathrm{Win}} \quad Q_{L}=60 \frac{\mathrm{KJ}}{\operatorname{hain}}\left(\frac{\operatorname{lnim}}{605}\right)=1 \mathrm{KW}
$$

a) $w_{1 n}=\frac{Q_{L}}{60 p}=\frac{60 \frac{\mathrm{ks}}{1.2}}{1.2}=50 \frac{\mathrm{~kJ}}{\mathrm{~mm}}\left(\frac{1 \mathrm{~mm}}{60 \mathrm{~s}}\right)=.83 \mathrm{~kW}$
b) $Q_{\text {ate }}=$ Wave

$$
\begin{aligned}
& \omega_{i n}=Q_{H}-Q_{L} \\
& s 0=Q_{H}-60 \\
& Q_{H}=110 \frac{\mathrm{~kJ}}{\mathrm{mmh}}
\end{aligned}
$$

6-4) Hp isosed to meet the heating requirements of a house and Maintain it at $20^{\circ} \mathrm{C}$. When outdoor temp. drops to $-2^{\prime} \mathrm{C}$, the hover $a_{H}=$ heat loss loses heat at $80000 \frac{\mathrm{~kJ}}{\mathrm{~h}}$. The cop $=2.5$
$Q_{l}=$ heat esther- Determine:
a) power consumed, 6) rate at which neat is absorbed / Fromoutsipe
a) \quad cop $=\frac{Q_{H}}{W_{i n}} ;$ win $=\frac{Q_{H}}{C_{O P}}=\frac{80000 \frac{\mathrm{kT}}{\mathrm{n}}}{2.5}=32000 \frac{\mathrm{~kJ}}{\mathrm{~h}}\left(\frac{\mathrm{kh}}{36005}\right)=8.88 \mathrm{KW}$

- \dot{Q}_{H} is 80000 since that heat must be kept constant to maintain temperature.
(HP) $\xrightarrow{\text { QU }}$ Have $\rightarrow 80000 \frac{\mathrm{KJ}}{\mathrm{h}}$
b) $C O P=\frac{Q_{H}}{Q_{H}-Q_{L}}$

$$
Q_{L}=\frac{-Q_{H}}{C O P}+Q_{H}=\frac{-80000}{25}+80000=48000 \frac{K J}{h}
$$

$H P=$ Heat Pump. Also, Q_{H} and Q_{L} signify different things depending on the cycle being analyzed. For power cycles, Q_{H} is the heat that goes into the cycle, since it is what powers the cycle. Q_{L} is any sort of heat loss in a power cycle.

For refrigeration cycles and heat pumps, Q_{H} is actually the heat lost and Q_{L} is the heat absorbed. This is because heat pumps and refrigerators can be thought of as the same cycle but measured from different standpoints.

A refrigerator's objective is to cool something by removing heat from whatever is being cooled. That heat must be rejected somewhere, which is a hot reservoir. Therefore, the COP of a refrigerator is measured by comparing the heat taken out of the cooled area (heat into the refrigeration cycle) as compared to the power input to the refrigerator. For heat pumps, the goal is to warm the hot reservoir even further by removing heat from a cold reservoir. This is why the COP for a heat pump is found by comparing how much warmer the hot reservoir is (heat rejected by the cycle into the hot reservoir) and the power input to the cycle.

Cannot heat engine

$$
\eta_{t h}<\eta_{\text {tries }}=i \text { reversible }
$$

$$
\begin{aligned}
& \eta_{t h}=1-\frac{Q_{L}}{Q_{H}} \\
& \eta_{\text {thins }}=1-\frac{\pi}{T_{H}} \quad \text { (carnot efficiency) }
\end{aligned}
$$

$$
y_{t h}=n_{\text {then }}=\text { reversible }
$$

$$
\eta_{m n}>\eta_{e_{n}} \text { res }=\text { impossible }
$$

6-5) A carnot heat engine receives 500 KJ of heat per cycle from a high-temp. source at $652^{\circ} \mathrm{C}$ and rejects heat to a low-temp. $\sin k$ at $30^{\circ} \mathrm{C}$. Determine a) $\eta_{\text {th }}$ and 6) amount of heat rejected to the sink.
a) $\eta_{\text {th rev }}=1-\frac{\frac{\pi}{T H}}{T_{H}}=1-\frac{30+273}{652+273}=$
b) Q_{L}

$$
\eta_{t h}=1-\frac{Q_{L}}{Q_{H}} \quad Q_{L}=-Q_{H}\left(\eta_{t h}-1\right)=-500 \mathrm{KJ}(.672-1)=164 \mathrm{JJ}
$$

Carnot Refrig.tHP

$$
\operatorname{coP_{R}}=\frac{1}{\frac{Q_{H}}{Q_{L}}-1} \quad \operatorname{coP_{HP}}=\frac{1}{1-\frac{Q_{L}}{Q_{P}}}
$$

$$
\begin{aligned}
& \operatorname{cop}_{A P_{1}(r e v}=\frac{1}{1-\frac{\pi}{T H}} \\
& \operatorname{cop}_{R}<\text { COP }_{\text {prev }}=\text { irreversible } \\
& C O P_{R}=C O P_{\text {prev }}=\text { reversible } \\
& \mathrm{COR}_{\mathrm{g}}>C O P_{\text {Rerev }}=\text { impossible }
\end{aligned}
$$

Cannot Cycle

- Reversible cycle (ideal)

Carnot cycle steps: Isothermal expansion \rightarrow Adiabatic expansion \rightarrow Isilnutux

Isothemal-Adiabatic-Isothermal-Adiabatic

Carrot
(carnot refrigeration cycle)

- The efficiency of an irreversible heat-ongine is always less than the efficiency of a reversible ane operating between the same reservoirs (Reversible cycles are more efficient)
- Efficiencies of all reversible heatensines operating between the same two reservoirs are the same.

$$
\left(\frac{Q_{H}}{Q_{L}}\right)_{c e s}=\frac{T_{H}}{T_{L}} \text { (absolute) }
$$

In the book, this is example 6-7. This problem is assumed to be reversible since it is in the Carnot devices section. Usually, there will be more information on whether or not the cycle is Carnot. It will use words such as "reversible", "ideal", etc., or may even outright tell you it is a Carnot device.

This is Example 6-6 from within the text.

